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Abstract

A rotating flexible shaft, with both external and internal viscous damping, driven through a universal
joint is considered. The mathematical model consists of a set of coupled, linear partial differential equations
with time-dependent coefficients. Use of Galerkin’s technique leads to a set of coupled linear differential
equations with time-dependent coefficients. Using these differential equations some effects of internal
viscous damping on parametric and flutter instability zones are investigated by the monodromy matrix
technique. The flutter zones are also obtained on discarding the time-dependent coefficients in the
differential equations which leads to an eigenvalue analysis. A one-term Galerkin approximation aided this
analysis. Two different shafts (‘‘automotive’’ and ‘‘lab’’) were considered. Increasing internal damping is
always stabilizing as regards to parametric instabilities. For flutter type instabilities it was found that
increasing internal damping is always stabilizing for rotational speeds v below the first critical speed, v1: For
v > v1; there is a value of the internal viscous damping coefficient, Civ; which depends on the rotational
speed and torque, above which destabilization occurs.
The value of Civ (‘‘critical value’’) at which the unstable zone first enters the practical range of operation

was determined. The dependence of Civ critical on the external damping was investigated. It was found for
the automotive case that a four-fold increase in external damping led to an increase of about 20% of the
critical value. For the lab model an increase of two orders of magnitude of the external damping led to an
increase of critical value of only 10%.
For the automotive shaft it was found that this critical value also removed the parametric instabilities out

of the practical range. For the lab model it is not always possible to completely stabilize the system by
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increasing the internal damping. For this model using Civ critical, parametric instabilities are still found in
the practical range of operation.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In Mazzei et al. [1], external viscous damping was included in a model of a rotating flexible shaft
driven through a universal joint. In the current work internal viscous damping, which may be
destabilizing depending on the rotational speed (see, for example, Refs. [2,3]), is included in the
model. It is assumed that the motor is such that the driving shaft rotates at a constant speed.
Internal damping may be caused by material damping such as in the model given by, for example,
Ehrich [4]. As noted by Kliem et al. [5], for example, internal damping can also be due to friction.
To focus solely on the effects of material damping, friction is not considered in the current work.
The current model is patterned after work in Refs. [2,3,6–8], in which external and internal
damping are introduced via coefficients Cext and Civ; external damping is proportional to the
particle velocity in an inertial co-ordinate system and internal damping is proportional to the
particle velocity in a rotating co-ordinate system. The mathematical model consists of a set of
coupled, linear partial differential equations with time-dependent coefficients. Use of Galerkin’s
technique leads to a set of coupled linear differential equations with time-dependent coefficients.
Using these differential equations some effects of internal viscous damping on parametric and
flutter instability zones are investigated using the monodromy matrix technique. The flutter zones
are also obtained on discarding the time-dependent coefficients in the differential equations which
leads to an eigenvalue analysis.

2. Equations of motion

Shown in Fig. 1 is a shaft BC (length l) driven through a universal joint by a shaft AB which is
rotating at a constant angular velocity O about its z-axis. (xyz is an inertial set of axes.) (Note that
in this model the dimensions of the joint are neglected.)
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External viscous damping (taken as being due to the end mount) and internal viscous damping
are included. For the case of initial angles between the driving and driven shafts equal to zero,1 the
equations of motion for the driven shaft are (in non-dimensional form)
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The equations of motion were developed with respect to the inertial frame xyz; with the z-axis
directed along the driven shaft axis and origin at the center of the universal joint (details are given
in Ref. [1]).
The underscored terms represent the new additional internal damping terms. The notation is as

follows: v is a non-dimensional rotation defined as v ¼ O=O0: O0 is a reference frequency given by:
O0 ¼ ðp2=l2Þ
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U ¼ u=l; V ¼ v=l are dimensionless elastic transverse deformations of the shaft neutral axis
measured with respect to xyz and Z ¼ z=l: LðZÞ ¼ lDðzÞ; where D stands for the Dirac delta
function. E denotes Young’s modulus, I the area moment of inertia, r the mass density and A the
cross-sectional area. t denotes non-dimensional time ðt ¼ OtÞ: Cx and Cy are damping coefficients
associated with the dashpots shown in Fig. 1 (Kx and Ky are springs rates). T0 is the torque
applied to the driving shaft AB: Civ is the internal damping coefficient per unit length.

3. Galerkin’s method

Eq. (1) constitute a set of coupled homogeneous partial differential equations with time-
dependent coefficients. The spatial dependence in the equations is satisfied by using Galerkin’s

ARTICLE IN PRESS

1Non-zero initial angles lead to forced motion problems, items that are not of interest in the current work.

A.J. Mazzei, R.A. Scott / Journal of Sound and Vibration 265 (2003) 863–885 865



method. The solutions are assumed to have the form

U ¼
XN
i¼1

FiðZÞFiðtÞ; V ¼
XN
i¼1

CiðZÞGiðtÞ; ð2Þ

where FiðZÞ and CiðZÞ are Galerkin comparison functions. For this problem they are chosen to
be mode shapes of a non-rotating Euler–Bernoulli beam pinned at one end and spring supported
at the other end. These functions for the xz and yz planes are, respectively,
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where HðxÞi and HðyÞi are the positive solutions of the transcendental equation
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for K ¼ Kx and K ¼ Ky; respectively.
Application of the method leads to (the coefficients used in the following equations are listed in

Appendix A)
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i ¼ 1; 2; 3;y;N; m ¼ 1; 2; 3y;N: ð3Þ

On truncation at i ¼ m ¼ N terms, Eqs. (3) constitute a set of 2N coupled differential equations
with time-dependent coefficients and various skew symmetric matrices. Thus the system is prone
to parametric and flutter type instabilities. It was found that the parametric instability leads to
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parametric resonances of the first and second kind and the flutter instability to self-excited
vibration. The instability zones can be obtained numerically by using the monodromy matrix
technique (see Ref. [9]). For all the cases investigated here the monodromy procedure converged
with the use of three Galerkin comparison functions. Results are presented for two distinct sets of
numerical parameters, namely, for a hollow shaft of automotive proportions and for a laboratory
model (a solid shaft). The parameter values for the automotive shaft are: l¼ 8:96
 10�1;
r¼ 7:83
 103 kg/m3, E¼ 2:07
 1011 N/m2, Ro ¼ 3:4950
 10�2 m, Ri ¼ 3:3300
 10�2 m (outer
and inner radius, respectively), Kx ¼ 2:50
 103 N/m, Ky ¼ 1:06
 104 N/m, Cext ¼ Cx ¼ Cy ¼
5:0
 10�1 N/(m/s). The laboratory model has the same material properties as the automotive
shaft plus the following different parameters: l ¼ 4:6
 10�1 m, Ro ¼ 2:40
 10�3 m (solid shaft),
Kx ¼ 25:17 N=m; Ky ¼ 7:74N=m; Cx ¼ Cy ¼ 1:0
 10�3 N=ðm=sÞ: Hereafter the models will be
referred to as ‘‘automotive’’ and ‘‘lab’’ models, respectively.
An issue is how ‘‘reasonable’’ are the numerical values assigned to the damping coefficients.

Following Kim et al. [7], this issue is addressed here by means of a simple model. By using a one-
term Galerkin approximation in Eqs. (3), neglecting time-dependent coefficients, ignoring
coupling and noting that t ¼ Ot; the following set of equations can be obtained
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where primes denote differentiation with respect to time t and the Galerkin coefficients,
x1; x2; g1; g2; l1; l2; a1 and a2 can be obtained from Appendix A by setting m ¼ i ¼ 1 in the
expressions. Eqs. (4) resemble a set of simple mass–damper–spring oscillator equations and thus
the damping ratios can be expressed as
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where v1 ¼ O1=O0 and v2 ¼ O2=O0 are the first two critical speeds of the shaft. Note that z1 refers
to motions on the xz plane while z2 refers to motions on the yz plane.
In order to assess the accuracy of the one-term approximation, some simulations were

conducted using a three-term Galerkin approximation. The stable response of the system of
equations to a specified set of initial conditions was obtained for the three-term approximation
and the damping ratios were evaluated based on a logarithmic decrement procedure. It was found
that the one-term approximation usually underestimates the amount of damping when compared
to the results obtained from the three-term approximation, but the values are quite close (within
10% for all the parameters tested). For instance, when using an internal damping coefficient
Civ ¼ 5:0 N s=m; and external damping coefficients Cext ¼ 0:5N s=m; the one-term approach leads
to z1 ¼ 0:0239 and z2 ¼ 0:0117 whereas the logarithmic decrement procedure gives z1 ¼ 0:0245
and z2 ¼ 0:0123: These results lend confidence of the reasonableness of the one-term approach in
estimating damping ratios in the system.
Eqs. (5) include the effect of both external and internal damping and will be used throughout

this work as an approximation for the overall damping ratios of the system described by Eqs. (3).
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Eqs. (5) can then be applied to both examples cited above and for zero internal damping the
damping ratios obtained are: (1) automotive: z1 ¼ 0:0055; z2 ¼ 0:0026; (2) lab: z1 ¼ 0:0012;
z2 ¼ 0:0007: It is seen that external damping is very light for both models.
Instability regions are sought in the parameter space G1 (dimensionless driving torque) versus v

(dimensionless driving rotation). In assessing the regions, it is useful to know the values of the
critical speeds and how they depend on the rotation (so-called Campbell diagrams). A Campbell
diagram can be obtained by disregarding the time-dependent coefficients in Eqs. (3), setting the
driving torque to zero and solving the eigenvalue problem associated with the resulting equations
for different values of driving rotation.
Fig. 2 shows the Campbell diagram for the automotive shaft. There are four critical speeds

which for zero rotational speed are: v1 ¼ 0:036 (553 r.p.m.), v2 ¼ 0:074 (1077 r.p.m.), v3 ¼ 1:563
(24,000 r.p.m.), v4 ¼ 1:565 (24,040 r.p.m.). (The first set of speeds is associated with rigid motions
of the shaft (shaft bouncing on springs) whereas the second set is associated with shaft flexible
vibrations.) The speeds for the case involving flexibility are very high, and are outside the range of
practical operation (maximum rotational speed for this case is taken to be 8000 r.p.m.). Note that
there is no discernible variation in the critical speeds for the rigid case when the rotational speed is
increased. Therefore, for all intents and purposes the critical speeds are the same as the natural
frequencies for the non-rotating case. Similar behavior was found for the laboratory model. The
first four critical speeds for this case are v1 ¼ 0:067 (180 r.p.m.), v2 ¼ 0:121 (327 r.p.m.), v3 ¼ 1:564
(4223 r.p.m.), v4 ¼ 1:569 (4236 r.p.m.).
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Fig. 2. Campbell diagram for automotive shaft.

A.J. Mazzei, R.A. Scott / Journal of Sound and Vibration 265 (2003) 863–885868



4. Parametric instabilities

The effects of internal damping on parametric instabilities will first be discussed.
Fig. 3 shows the parametric and flutter type instabilities for the automotive system for the case

where the internal damping is zero (z1 ¼ 0:0055; z2 ¼ 0:0026). (In Figs. 3–7, the external damping
is given by Cext ¼ 5:0
 10�1 N=ðm=sÞ:) They were obtained using the monodromy matrix
technique (see, for example, Ref. [9]; the technique captures both parametric- and flutter-type
instabilities). Zones I and II are principal zones of instability (associated with the first two critical
speeds, v1 and v2 shown by vertical lines in the plot) while zones III and IV denote combination
type instabilities (sum and difference type, respectively). These zones of instability are due to rigid
body modes, i.e., the shaft bouncing on springs. For this case, zones due to shaft flexibility are
outside the range in the plots.
Next the internal damping is increased to Civ ¼ 0:5N s/m with the same external damping

as before (overall damping ratios are z1 ¼ 0:0074 and z2 ¼ 0:0036). As shown in Fig. 4, this
has a slight stabilizing effect on the system in that the instability boundaries are raised. For
this case parametric type instabilities show a small decrease as a result of internal damping
increase.
Fig. 5 shows the instabilities for the system when the internal damping is set to Civ ¼

5:0N s=m ðz1 ¼ 0:0239; z2 ¼ 0:0117Þ: It is seen that this value of internal damping has a more
significant stabilizing effect on the parametric instabilities.
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Fig. 6 shows an overlap for the three cases discussed above. Note the gradual stabilizing effect
of the internal damping increase on the parametric instabilities.
Next, the internal damping is increased to Civ ¼ 50N s=m ðz1 ¼ 0:1887; z2 ¼ 0:0931Þ:

As shown in Fig. 7 this value of damping has a considerable stabilizing effect on the system.
For this case all parametric instabilities occur for a level of torque over G1 ¼ 0:0005
(corresponding to 1.7
 103Nm) which is the torque that would cause static yielding of the
shaft. Thus parametric instabilities are reduced to a level where they are no longer of practical
importance.
Note that for small values of external damping Cext; the combination zones are wider than the

principal zones, but as Cext increases the trend reverses (this was also noted by Mazzei et al. in
Ref. [1]).
Next the lab model is examined. Fig. 8 shows the instabilities for the lab model for the case

where internal damping is zero (z1 ¼ 0:0012; z2 ¼ 0:0007). Note that in the lab model parametric
instabilities due to rigid and flexible modes occur for practical rotational speeds (vo2; i.e.,
5360 r.p.m.). The effect of increased internal damping is observed in Fig. 9. The figure shows an
overlap of zones of instability for the following values of internal damping: Civ ¼ 0 ðz1 ¼ 0:0012;
z2 ¼ 0:0007Þ; Civ ¼ 0:001N s=m ðz1 ¼ 0:0016; z2 ¼ 0:0009Þ and Civ ¼ 0:01N s=m ðz1 ¼ 0:0053;
z2 ¼ 0:0030Þ: (In Figs. 8–10 the external damping is given by Cext ¼ 1:0
 10�3 N= ðm=sÞ). Note
that, as in the automotive example, parametric instabilities are reduced when internal damping
increases. For the example, a value of Civ ¼ 0:001N s=m ðz1 ¼ 0:0016; z2 ¼ 0:0009; same as
external damping) produces a small stabilizing effect on the system, whereas a value of Civ ¼
0:01N s=m ðz1 ¼ 0:0053; z2 ¼ 0:0030; an order of magnitude higher than external damping) has a
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more pronounced stabilizing effect. Fig. 10 shows the instabilities for the lab model when the
internal damping has a value of Civ ¼ 0:15 N s=m ðz1 ¼ 0:0629; z2 ¼ 0:0353Þ: It can be seen in the
plot that when this value of damping is applied to the lab model, parametric instabilities only
occur for values of torque over G1 ¼ 0:0021: This is considered to be the upper limit for
operational conditions in this example2 and, therefore, this relatively low value of internal
damping can rid the system of parametric instabilities.

5. Flutter instabilities

Flutter instabilities will now be addressed. Consider first the automotive example. Shown in
Fig. 11 are the flutter boundaries (as well as parametric instability zones) for Civ ¼ 0 ðz1 ¼ 0:0055;
z2 ¼ 0:0026Þ; Civ ¼ 0:5 N s=m ðz1 ¼ 0:0074; z2 ¼ 0:0036Þ and Civ ¼ 5:0 N s=m ðz1 ¼ 0:0239; z2 ¼
0:0117Þ ðCext ¼ 5:0
 10�1 N=ðm=sÞÞ: The stability boundaries for Civ ¼ 0:5N s=m; and Civ ¼
5:0N s=m are denoted by ABC and DE; respectively. The boundary of ABC is exponential in
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nature and its asymptote is essentially horizontal. It is judged that the value Civ ¼ 0:5N s=m is
always stabilizing, regardless of the magnitude of the rotational speed v: For the values of v shown
in Fig. 11, Civ ¼ 5:0 N s=m is always stabilizing. However it is conjectured that since DE shows a
linear decrease (in contrast to ABC) there will be a value of v above which destabilization occurs
(when DE intersects the horizontal asymptote ABC; this value is not pursued here, since it would
be outside the practical range of operation). Note that it has been numerically observed that the
straight-line behavior occurs when the internal damping is dominant.
In the case of the lab model similar behavior was observed. It is seen in Fig. 9 that

flutter instabilities diminish for increasing values of internal damping. However, destabilization
occurs when a value of Civ ¼ 0:15 N s=m ðz1 ¼ 0:0629; z2 ¼ 0:0353Þ; for example, is used
(compare Figs. 8–10). Here the increase of internal damping leads to an increase in the flutter
instability zone. Note that for this case instabilities occur for all points in the torque–speed space
that have speeds above v ¼ 1:5 (approximately 4000 r.p.m.) which is below the upper speed
boundary for this shaft and consequently can create unstable conditions inside the range of
operation.
From the previous discussion a natural question that arises concerns the value of Civ at

which destabilization first occurs and its dependence on rotational speed. The monodromy
matrix technique is very computationally intensive so this issue will be addressed as
follows. Discarding the time-dependent coefficients in Eqs. (3) leads to the following set of
equations:

v2½M�f .Qg þ v½D�f ’Qg þ ½S�fQg ¼ f0g; ð6Þ
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where

M½ � ¼
g1mi

� �
� X3 l1mi

� �
0½ �

0½ � g2mi

	 

� X3 l2mi

	 

" #

;

D½ � ¼
d1 x1mi

� �
þ d3 g1mi

� �
�vX4 l3mi

� �
vX4 l4mi

	 

d2 x2mi

	 

þ d3 g2mi

	 

" #

;

½S� ¼
X2 a1mi

� �
d3v g3mi

� �
þ G1 d3mi

� �
þ G1 b1mi

� �
�d3v g4mi

	 

� G1 d2mi

	 

� G1 b2mi

	 

X2 a2mi

	 

" #

;

Qf g ¼
Fif g

Gif g

( )
:

Eqs. (6) predict instability whenever the associated eigenvalues have a positive real part.
In order to demonstrate accuracy of Eqs. (6) for predicting flutter type instabilities, eigenvalue

extraction is used to obtain the instability zones of the automotive shaft for the following values of
internal damping: Civ ¼ 0 ðz1 ¼ 0:0055; z2 ¼ 0:0026Þ; Civ ¼ 0:5N s=m ðz1 ¼ 0:0074; z2 ¼ 0:0036Þ
and Civ ¼ 5:0 N s=m ðz1 ¼ 0:0239; z2 ¼ 0:0117Þ: These are shown in an overlap format in Fig. 12.
Boundaries ABC and DE are also shown. Comparing these results to the ones obtained using the

ARTICLE IN PRESS

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00

non-dimensional rotation

n
o

n
-d

im
en

si
o

n
al

 t
o

rq
u

e

v1

v2

D

B

C

A

E

Fig. 11. Overlap of instability regions for different values of internal damping over an extended range of rotational

speed (~, Civ ¼ 0; ’, Civ ¼ 0:5; m, Civ ¼ 5:0).

A.J. Mazzei, R.A. Scott / Journal of Sound and Vibration 265 (2003) 863–885 875



monodromy matrix (see Fig. 11) excellent agreement is seen. These observations lend confidence
to the eigenvalue analysis for flutter prediction and therefore this technique is used in the
following discussion.
Fig. 13 shows an overlap of flutter instabilities for the automotive model when the internal

damping is set to Civ ¼ 0:5N s=m and Civ ¼ 50 N s=m ðz1 ¼ 0:1887; z2 ¼ 0:0931Þ: Consider a
typical point P1 which lies below the first critical speed. Note that for Civ ¼ 0:5N s=m P1 is an
unstable point. When the internal damping is increased to Civ ¼ 50 N s=m the point becomes
stable. Consider next a second typical point P2 above the first critical speed. Note that in this case
for Civ ¼ 0:5 N s=m the point is stable while for Civ ¼ 50 N s=m the point becomes unstable. For
this case increasing the internal damping can be destabilizing.
For the lab model an overlap of flutter instability zones is shown in Fig. 14. (In both Figs. 14

and 15 external damping is given by Cext ¼ 1:0
 10�3 N=ðm=sÞ:) The cases shown are: Civ ¼
0 ðz1 ¼ 0:0012; z2 ¼ 0:0007Þ; Civ ¼ 0:001 N s=m ðz1 ¼ 0:0016; z2 ¼ 0:0009Þ and Civ ¼ 0:01 N s=m
ðz1 ¼ 0:0053; z2 ¼ 0:0030Þ: It is seen that flutter instabilities decrease over the range observed
when internal damping is increased. (This is the same trend observed in Fig. 9 which was obtained
utilizing the monodromy method.) Simulations using the eigenvalue analysis and involving still
higher values of internal damping led to increased flutter instabilities for this model (as shown by
the monodromy method, for example, in Fig. 10). Consider the overlap plot shown in Fig. 15. In
the plot P1 is a point that lies below the first critical speed and is stabilized by an internal damping
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increase (from Civ ¼ 1:50 to 3:0 N s=m i.e., z1 ¼ 0:6183; z2 ¼ 0:3464 to z1 ¼ 1:2354; z2 ¼ 0:6922),
whereas P2 is a point above the first critical speed that is destabilized by an internal damping
increase (note however that the associated z values are probably too high to be attainable in
practice).
The data for both models shows that there is a value of Civ; which depends on the rotational

speed vU and torque G1; above which destabilization occurs. For that value of Civ that leads to
destabilization to be of practical importance, the associated speed v and torque G1 should lie in the
practical range of operation. The value of Civ for which the unstable zone first enters the practical
range is herein called the ‘‘critical value’’ and this issue will be addressed in the following. (The
dependency of Civ on external damping will be investigated later.)
Consider first the automotive model. Fig. 16 shows the boundaries for the flutter zones of the

automotive model for different values of internal damping. The lines in the plot correspond to the
boundary of the flutter zones obtained via the eigenvalue analysis. The rectangular region
(0oG1o0:0004; 0ovo0:4 ) in the figure defines the operational range for the shaft. Note that an
internal damping value of Civ ¼ 16 N s=m ðz1 ¼ 0:0642; z2 ¼ 0:0316Þ brings the flutter boundary
close to the operational range chosen. Thus this is approximately the critical value for this range,
i.e., higher values of internal damping will lead to instability for operational conditions. The value
of Civ ¼ 16 N s=m was obtained by a trial and error procedure. A more systematic approach is as
follows.
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A one term Galerkin approximation to Eqs. (6) leads to the matrix

O0ðd1x1 þ d3g1Þ
�g1 þ X3l1

�
O0vX4l3

�g1 þ X3l1

O2
0X2a1

�g1 þ X3l1

O2
0ðd

3vg3 þ G1d3 þ G1b1Þ
�g1 þ X3l1

O0vX4l4
�g2 þ X3l2

O0ðd2x2 þ d3g2Þ
�g2 þ X3l2

O2
0ð�d3vg4 � G1d2 � G1b2Þ

�g2 þ X3l2

O2
0X2a2

�g2 þ X3l2
1 0 0 0

0 1 0 0

2
666666664

3
777777775
: ð7Þ

The eigenvalues of matrix (7) can be expressed (using MAPLE) as functions of the internal
damping and their real part can be plotted for different values of damping. This simple scheme
gives an estimate of the value of Civ at which flutter instabilities first enter the operational zone. Its
accuracy can then be checked using the full eigenvalue analysis. (Results for the automotive shaft
were also checked using a Routh–Hurwitz approach.) For the right upper corner point of the
rectangular operational zone (v ¼ 0:4; G1 ¼ 0:0004), the real and imaginary parts of all of the
eigenvalues are plotted in Fig. 17 as functions of Civ: The plot shows the eigenvalue variation for
internal damping ranging from Civ ¼ 0 ðz1 ¼ 0:0055; z2 ¼ 0:0026Þ; to Civ ¼ 20 N s=m
(z1 ¼ 0:0788; z2 ¼ 0:0388). Note that the real parts of two of them enter the positive range and
consequently cause flutter instabilities to occur.
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In order to find the specific value of Civ for which instabilities will occur a plot of one of these
eigenvalues as a function of internal damping is shown in Fig. 18. Note that at Civ ¼
15:6 N s=m ðz1 ¼ 0:0627; z2 ¼ 0:0309Þ; the real part becomes positive and so instability occurs.
(This value agrees well with the one obtained by using the full eigenvalue analysis seen in Fig. 16.)
Next the approximation is used to derive an estimate for a critical value for the lab model. For

this example the real part becomes positive approximately for a value of Civ ¼ 0:037N s=m ðz1 ¼
0:0164; z2 ¼ 0:0092Þ: This estimate was used in a full eigenvalue analysis and after some iterations
Fig. 19 was obtained. From the figure it is judged that Civ ¼ 0:040N s=m ðz1 ¼ 0:0177; z2 ¼
0:0099Þ: This result shows that the approximation also gives a good estimate of the critical value in
the case of the lab model. The rectangular region defining the operational range for the model is
given by 0oG1o0:0021 and 0ono2:0:
The above data was obtained for specific values of external damping (Cext ¼ Cx ¼ Cy ¼

5:0
 10�1 N s/m for the automotive shaft and Cext ¼ Cx ¼ Cy ¼ 1:0
 10�3 N s/m for the lab
shaft). A natural question is how does the critical value of Civ change with Cext: Table 1 shows the
variation of the critical damping for the automotive shaft when the overall damping ratios are
increased approximately five times (z1 ¼ 0:06 to z1 ¼ 0:29 and z2 ¼ 0:03 to z2 ¼ 0:14). It is seen
that the critical damping varies about 20% with external damping for the automotive shaft.
Results for the lab model are shown in Table 2. It can be seen that the critical damping value is
much less susceptible to increases in external damping. For this case, an increase in external
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damping of two orders of magnitude led to a change in the critical value of only about 10%. These
results were obtained using the approximation since it was shown that it works well for both
models.
One final item that arises concerns the possible existence of a value of Civ which will rid the

system of parametric instabilities keeping flutter instabilities outside the range of practical
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operation. Consider the automotive model. Table 1 shows that the lowest value of Civ is
15.5N s/m. Fig. 20 shows the instability regions for the automotive model for this value obtained
using the monodromy matrix technique. It is seen that both parametric and flutter instabilities

ARTICLE IN PRESS

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

0 2 5 6

non-dimensional rotation

n
o

n
-d

im
en

si
o

n
al

 t
o

rq
u

e

431

Fig. 19. Flutter Instabilities for the lab model for Civ ¼ 0:040 N s=m:

Fig. 18. Real part of one of the eigenvalues for the automotive example as a function of internal damping.
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Table 2

Critical damping as a function of external damping—lab shaft

Ccrit Cext B1 B2

0.037 0 0.0152 0.0085

0.038 0.001 0.0170 0.0094

0.040 0.080 0.1133 0.0635

0.042 0.100 0.1382 0.0775

Table 1

Critical damping as a function of external damping—automotive shaft

Ccrit Cext B1 B2

15.5 0 0.06 0.03

16.0 5.0 0.11 0.06

16.5 10.0 0.17 0.08

17.5 15.0 0.23 0.11

18.5 20.0 0.29 0.14
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are outside the range of operation. Therefore, for the automotive example this value of internal
damping (and all larger values) will lead to stable operational conditions in the entire range of
operation.
Next the lab shaft is examined. Fig. 21 shows the instability zones for the shaft with a value of

Civ ¼ 0:042N s=m:Note that some parametric instabilities are found inside the range of operation
(and so will also occur for the other values given in Table 2). For the lab case it is not possible to
completely rid the system of instabilities through increase of internal damping.

6. Conclusions

Increasing internal damping is always stabilizing as regards to parametric instabilities.
For flutter instabilities the situation is more complex. Increasing internal damping is always

stabilizing for rotational speeds below the first critical speed, v1: For v > v1; there is a value of Civ;
which depends on v and G1; above which destabilization occurs.
The values of Civ at which the flutter unstable zone first enters the practical range

were determined as a function of external damping. For the automotive shaft it was found
that a four-fold increase in external damping led to an increase of about 20% of the critical
value. It was found that these values of Civ also removed parametric instabilities out of the
practical range.
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For the lab model an increase in external damping of two orders of magnitude led to a change
in the critical value of only about 10%. The lab model showed that it is not always possible to
completely stabilize the system by increasing the internal damping. On using Civ critical,
parametric instabilities are still found in the practical range of operation.

Appendix A. Galerkin coefficients

Z 1

0

d4Fm

dZ4
ðZÞFiðZÞ dZ ¼ a1mi

;

Z 1

0

d4Cm

dZ4
ðZÞCiðZÞ dZ ¼ a2mi

;

Z 1

0

FmðZÞFiðZÞ dZ ¼ g1mi
;

Z 1

0

CmðZÞCiðZÞ dZ ¼ g2mi
;

Z 1

0

CiðZÞFmðZÞ dZ ¼ g3mi
;

Z 1

0

FiðZÞCmðZÞ dZ ¼ g4mi
;

Z 1

0

FmðZÞjZ¼1FiðZÞLðZ � 1Þ dZ ¼ FmðZÞjZ¼1FiðZÞjZ¼1¼ x1mi
;

Z 1

0

CmðZÞjZ¼1CiðZÞLðZ � 1Þ dZ ¼ CmðZÞjZ¼1CiðZÞjZ¼1¼ x2mi
;

Z 1

0

dCmðZÞ
dZ

����
z¼0

FiðZÞ
dLðZÞ
dZ

dZ ¼ �
dCmðZÞ
dZ

����
z¼0

dFiðZÞ
dZ

����
z¼0

¼ �2d3mi
;

Z 1

0

dFmðZÞ
dZ

����
z¼0

CiðZÞ
dLðZÞ
dZ

dZ ¼ �
dFmðZÞ
dZ

����
z¼0

dCiðZÞ
dZ

����
z¼0

¼ �2d2mi
;

Z 1

0

dFmðZÞ
dZ

����
z¼0

FiðZÞ
dLðZÞ
dZ

dZ ¼ �
dFmðZÞ
dZ

����
z¼0

dFiðZÞ
dZ

����
z¼0

¼ �2d1mi
;

Z 1

0

dCmðZÞ
dZ

����
z¼0

CiðZÞ
dLðZÞ
dZ

dZ ¼ �
dCmðZÞ
dZ

����
z¼0

dCiðZÞ
dZ

����
z¼0

¼ �2d4mi
;

Z 1

0

d3Cm

dZ3
ðZÞFiðZÞ dZ ¼ b1mi

;

Z 1

0

d3Fm

dZ3
ðZÞCiðZÞ dZ ¼ b2mi

;

Z 1

0

d2Fm

dZ2
ðZÞFiðZÞ dZ ¼ l1mi

;

Z 1

0

d2Cm

dZ2
ðZÞCiðZÞ dZ ¼ l2mi

;

Z 1

0

d2Cm

dZ2
ðZÞFiðZÞ dZ ¼ l3mi

;

Z 1

0

d2Fm

dZ2
ðZÞCiðZÞ dZ ¼ l4mi

;

Z 1

0

FmðZÞ
dLðZÞ
dZ

dZ ¼ �F0
mð0Þ;

Z 1

0

CmðZÞ
dLðZÞ
dZ

dZ ¼ �C0
mð0Þ:
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The above integrals were evaluated numerically using MAPLE. The following properties of the
Dirac delta function were also used in deriving some of the above results:Z b

a

DðZ � BÞgðZÞ dZ ¼ gðBÞ;
Z b

a

dDðZ � BÞ
dZ

gðZÞ dZ ¼ �
dgðZÞ
dZ

����
Z¼B

; aoBob:
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